Case report
Effective radiotherapy and an abscopal effect for bone metastases of an unknown origin

Takeo Takahashi, Kikuo Machida, Norinari Honda, Makoto Hosono, Akio Kashimada, Osamu Murata, Hisato Osada, Wataru Watanabe, Keiichiro Nishimura, and Hitoshi Ohno

Department of Radiology, Saitama Medical Center, Saitama Medical School

Abstract

We report a case that radiotherapy was very effective for a primary unknown bone metastasis, and an abscopal effect was observed. Although the pelvic bone metastasis was large, a dramatic response to radiotherapy was observed after radiation dose of 50Gy, and local control lasted two years after the treatment. In addition, spontaneous remission was seen in a portion of the metastatic lesion outside the irradiated field, and it was regarded as an abscopal effect, which is a very rare phenomenon. The immunity of the patient might generate such a good effect in palliative radiotherapy, and an abscopal effect in this patient. CT and FDG-PET did not show a primary lesion of pelvic bone metastases for two years, and the patient enjoyed normal daily life after radiotherapy.

Key words: radiotherapy, bone metastasis, unknown origin, abscopal effect

Introduction

Relief of pain, and prevention of pathological fracture and paralysis are the therapeutic purposes in patients with osseous metastases. Generally, they cannot expect a complete cure by palliative treatment. However, radiotherapy is useful palliative treatment for patients with painful bone metastases. As for the prognosis of patients with osseous metastases, the site of the primary lesion, the degree of bone metastases, and the metastasis of other organs are important. In addition, performance status (PS), and lesions having more than two symptoms are the factors which influence patient outcome. In cases of primary unknown carcinoma with onset of bone metastases, it was reported that primary lesions were detected in about 90% of the cases. We report a case of primary unknown bone metastases that responded well to radiotherapy, and neither the primary site nor any other metastatic lesions were detected two years after the initial treatment.

Case Report

The chief complaint of a 46-year-old male was pain of the left hip joint and the left lower extremity. The patient was referred to our hospital in 2001. Pelvic X-ray showed a large osteolytic lesion at the left side of pelvic bone. The general condition of the patient was ECOG-PS 2, and the patient could not walk by himself on admission. CT of the pelvis showed a massive lesion in the left side of the pelvic bone and bone metastasis in the right ilium (Fig.1). Bone scintigraphy revealed mild accumulation in the left ilium (Fig.2). Whole body 201Tl scintigraphy demonstrated mild accumulation in the metastatic bone tumor, but no other abnormal findings were noted. CT of the chest and abdomen did not detect the primary lesion of bone metastases. The findings of hematology were not abnormal. The tumor marker, CEA, was elevated to 51.0, however, PSA, CA19-9, and AFP were within normal range. CT-guided biopsy was performed in the left ilium, and the specimen was
Bone scintigraphy shows abnormal accumulation in the left ilium, histopathologically diagnosed as adenocarcinoma. The radiation dose was 50Gy to the bone metastasis tumor, which was from the left ilium to the left hip joint, with a fractionated dose of 2 Gy daily. The irradiation field was wide because the iliac metastasis tumor was very large. Therefore, we did not treat the right ilium metastasis, which was without pain. Radiotherapy palliated the pain of the patient, and walking with a stick gradually became possible two months after radiotherapy. The serum level of CEA decreased to normal range after radiotherapy. Three months after radiotherapy, pelvic CT showed that the pelvic bone tumor was markedly decreased. Furthermore, the tumor was spontaneously reduced even if metastases to bone lesion of the right ilium was a lesion outside the irradiated field (Fig.3). One year after radiotherapy, a pelvic X-ray showed recalcification of the irradiated area, and pelvic CT showed that the tumor had

Fig.1. CT of the pelvis showed a massive bone metastasis, which is from the left ilium (A) to the left acetabulum (B), and bone metastasis in the right ilium (C).

Fig.2. Bone scintigraphy shows abnormal accumulation in the left ilium.

Fig.3. The skeletal metastasis of the right ilium, which is outside the irradiated field, was spontaneously reduced after radiotherapy to the left iliac bone metastasis.
disappeared (Fig. 4). Neither the primary lesion nor any other metastatic lesion were seen on CT or FDG-PET. At present, normal daily life has been possible for the patient. There was no recurrence in the irradiated area, and a lesion regarded as a new metastatic lesion and the primary site were not detected.

Discussion

Patients were considered to have metastases from an unknown origin if they had clinical and radiological evidence of metastatic cancer, but clinical examinations did not reveal the primary tumor. The frequency of primary unknown carcinoma is about 3% of all malignant tumors. About fifteen percent of the patients of primary unknown carcinoma (non squamous cell carcinoma) have skeletal metastases. And adenocarcinoma is the most common histologic type. Cases of adenocarcinoma and cervical nodal involvement have poor prognoses in comparison with those of squamous and anaplastic carcinomas. On the other hand, cases of squamous cell carcinoma were found to be the most common histologic type in the long survivors. Lung cancer is the most frequently observed primary lesion in patients with skeletal metastasis of an unknown origin. Other primary lesions are prostatic carcinoma, breast cancer, and hepatocellular carcinoma. The prognosis of treated patients of primary unknown cancers is better than that of untreated patients. Katagiri noted that patients with a long life expectancy should be treated in a manner that is effective for a long period. In addition, the prognosis of patients with metastases discovered in the lymph nodes was good in comparison with that in other sites. As for the osseous metastasis of unknown primary site, the prognosis of lung cancer and hepatocellular carcinoma was worse than that of prostate cancer, breast cancer, or renal cell carcinoma.

The palliative radiotherapy for bone metastases generally improves 80% of the symptoms of pain. Most metastases were treated with 30Gy in 10 fractions or 40 to 50Gy with a fractionated dose of 2Gy. The patient received 50Gy in 25 fractions, because the metastatic lesion was very large. Although the size of the tumor was over 10cm, a very good response to radiotherapy, including the disappearance of the tumor, was achieved in this case. Radiosensitivity is not commonly high for adenocarcinoma. However, in this case, a large tumor regressed markedly, and local control in the irradiated area was achieved for two years. Arcangeli reported that the response of bone metastasis to radiotherapy was independent from the primary sites and the histologic types.

In addition, the other osseous metastatic lesion outside the irradiated field spontaneously reduced, and it is attributable to abscopal effect. Abscopal regression of tumors results from the
irradiation effect on a tumor in remote non-
irradiated tissue. The abscopal effect is a very
rare phenomenon. Ohba reported spontaneous
regression of hepatocellular carcinoma after
radiotherapy for vertebral bone metastasis8).
Pathophysiology and mechanism of the abscopal
effect have not been well defined. Konoeda
described that the abscopal effect was often
observed in patients who had infiltrating
lymphocytes around the degenerated cancer cells
in the irradiated primary tumor nests9). Ohba
described that the abscopal related regression
might be associated with the host immune
response 8).

Our patient with a very large metastatic lesion
responded well to radiation, and an abscopal
effect was observed after radiotherapy. Therefore, it
is suggested that immunological mechanisms
might have played an important role in the
response.

It is needed to detect the primary lesion with
skeletal metastases of an unknown origin as soon as
possible. Katagiri reported that chest CT and
abdominal CT were useful, but examination of
the gastrointestinal tract and pelvic CT seldom
revealed the primary lesion, and should not be
performed as an initial routine study in the
absence of abdominal symptoms2). The primary
lesion did not appear on either chest or abdominal
CT, or gastrointestinal tract examination in this
patient. In recent years, it is reported that FDG-
PET is useful for detecting primary lesions, or
metastatic lesions, and as influencing in selecting
appropriate therapeutic management 10). Lassen
noted that 18F-FDG PET was useful in unknown
primary tumors11). Our patient underwent FDG-
PET to detect the primary lesion two years after
radiotherapy. However, the primary site of
osseous metastases has not been detected.

References
1. Snee MP, Vyramuthu N: Metastatic carcinoma
from unknown primary site: the experience
of a large oncology center. Br J Radiol
58;1985:1091-1095.

2. Katagiri H, Takahashi M, Inagaki J, Sugiura H,
Ito S, Iwata H: Determining the site of the
primary cancer in patients with skeletal
metastasis of unknown origin: a retrospective

3. Altman E, Cadman E: An analysis of 1539
patients with cancer of unknown primary

4. Nystrom JS, Weiner JM, Heffelfinger-Juttner J,
Irwin LE, Bateman JR, Wolf RM: Metastatic
and histologic presentations in unknown

5. Greager JA, Wood D, Gupta TKD: Metastatic
cancer from an undetermined primary site. J

6. Glynne-Jones RGT, Anand AK, Young TE et al:
Metastatic adenocarcinoma in the cervical
lymph nodes from an occult primary. Clin
Oncol 1;1989: 19-21.

The responsiveness of bone metastases to
radiotherapy: The effect of site, histology and
radiation dose on pain relief. Radiother Oncol

8. Ohba K, Omagari K, Nakamura T, Ikuno N,
Saeki S, Matsuo I, Kinoshita H, Masuda J,
Hazama H, Sakamoto I, Kohno S: Abscopal
regression of hepatocellular carcinoma after
radiotherapy for bone metastasis. Gut

9. Konoeda K: Therapeutic efficacy of pre-
operative radiotherapy on breast carcinoma in
special reference to its abscopal effect on
metastatic lymph-nodes. J Jpn Soc Cancer
Ther 25; 1990: 1204-1214.

B: 6.18F-FDG whole body positron emission
tomography (PET) in the detection of unknown
primary tumors. Clin Positron Imaging 3;

11. Lassen U, Daugaard G, Eigtved A, Damgaard
K, Friberg L: 18F-FDG whole body positron
emission tomography (PET) in patients with
unknown primary tumours (UPT). Eur J Cancer
35; 1999:1076-1082.
ダウンロードされた論文は私的利用のみが許諾されています。公衆への再配布については下記をご覧下さい。

複写をご希望の方へ

断層映像研究会は、本誌掲載著作物の複写に関する権利を一般社団法人学術著作権協会に委託しております。

本誌に掲載された著作物の複写をご希望の方は、(社)学術著作権協会より許諾を受けて下さい。但し、企業等法人による社内利用目的の複写については、当該企業等法人が社団法人日本複写権センター（(社)学術著作権協会が社内利用目的複写に関する権利を再委託している団体）と包括複写許諾契約を締結している場合にあっては、その必要はございません（社外頒布目的の複写については、許諾が必要です）。

権利委託先 一般社団法人学術著作権協会
〒107-0052 東京都港区赤坂9-6-41 乃木坂ビル3F FAX：03-3475-5619 E-mail：info@jaacc.jp

複写以外の許諾（著作物の引用、転載、翻訳等）に関しては、(社)学術著作権協会に委託致しております。
直接、断層映像研究会へお問い合わせください

Reprographic Reproduction outside Japan
One of the following procedures is required to copy this work.

1. If you apply for license for copying in a country or region in which JAACC has concluded a bilateral agreement with an RRO（Reproduction Rights Organisation）, please apply for the license to the RRO.
Please visit the following URL for the countries and regions in which JAACC has concluded bilateral agreements.
http://www.jaacc.org/

2. If you apply for license for copying in a country or region in which JAACC has no bilateral agreement, please apply for the license to JAACC.
For the license for citation, reprint, and/or translation, etc., please contact the right holder directly.
JAACC（Japan Academic Association for Copyright Clearance）is an official member RRO of the IFRRO（International Federation of Reproduction Rights Organisations）.
Japan Academic Association for Copyright Clearance（JAACC）
Address 96-41 Akasaka, Minato-ku, Tokyo 107-0052 Japan
E-mail info@jaacc.jp Fax: +81-33475-5619